Quantum Mechanical Approaches to Molecular Bonding

© In principle, it is possible to construct a Schrigghr equation,
HY = EY, to describe the electronic structure of a mokecul

® In practice, seeking exact solutions to the Scimgel
equation for molecules is an insurmountable matheaia

problem.

iz Two principal approaches have been taken to caststru
approximate wave functions for molecules, starntunf the
atomic orbitals of the atoms comprising the molesul

1. Valence Bond (VB) theory - developed by Linusilig
and co-workers, essentially puts the Lewis notibn o
electron pairs on a guantum mechanical footingvhich
each shared or lone pair of electrons about an atom
occupies a localized orbital.

2. Molecular orbital (MO) theory, developed by Rdlfer
Mulliken and co-workers, constructs new orbitalst thre
delocalized (i.e., “spread out”) across the molecule.

= VB and MO theories take different mathematical appghes
to constructing wave functions for the molecul«, their
results are often equivalent.



Molecular Orbital Theory of Diatomic Molecules

iz MO theory seeks to formulate orbitals that extewelr dhe
entire molecule as linear combinations of atomhatats
(LCAQOSs) on the individual atoms.

= For diatomic molecules the MOs are positive andaheg
combinations of the wave functions for pairs ofnaitoorbitals
(AOs) on the two atoms, A and B:
¥* =ay, + by
¥~ =ay, —byg =ay, + (-byg)

wherea andb are mixing constants, which indicate the degree of
overlap of the two orbitals.



MOs from 1s Orbitals
Homonuclear Diatomic Molecules

0 + 0 0 ¢ bonding MO
0 + . “ ¢* antibonding MO

iz Positive combination causes a build-up of electtensity
between the nuclei, resulting irsmma bonding MO ().

iz  Negative combination results in a nodal plane betwe
nuclel, which works against bonding, resultinggigma
antibonding MO (o).

iz |n general, number of MOs formed as LCAOs equalsber
of AOs used.



MO Energy Level Scheme
First Period Homonuclear Diatomic Cases
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Scheme is filled in the usual aufbau manner, falhgvihe
Pauli exclusion principle and Hund's rule of maxmu
multiplicity (for the ground state).

Bond order is defined as follows:

bond order = %2 (bondings — antibonding's)
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(He, does not exist.)



H," and He," lons

bond order =%(2 - 1) =%



MOs for Second Period
Homonuclear Diatomic Molecules

In general, atomic orbitals that are most simiteemnergy
Interact most effectively in forming MOs.

MOs for second period diatomic molecules are coatimns
of the type 8+ 2sand 2 + 2p.



Sigma MOs from X £ 2s
(cutaway views)




MO Energy Level Scheme
Li,, Be,, and Related lons
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Configurations of Li, and Be

bond order = 1
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Sigma Orbitals from 2p £ 2p

® For homonuclear diatomic moleculds () c MOs, whether
formed froms or p AOs, haveX," symmetry, ang* MOs
haveX,” symmetry.

*
62p

® For heteronuclear diatomic molecul€, ) c ando* MOs,
whether formed frons or p AOs, haveX’™ symmetry.
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Pi MOs from 2p = 2p

Two degenerate,, bonding MOs, one from® + 2p, and one

from 2p, + 2p,.

Two degeneratg*,, antibonding MOs, one fromp2— 2p, and
one from 3, — 2p,.

2p, + 2p, Combinations
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For homonuclear diatomic moleculé3 () 1 MOs havdl,
symmetry, ana* havell, symmetry.

For heteronuclear diatomic molecul€},j = andn* MOs
havell symmetry.



MO Scheme for Q through Ne,
and Related lons

i  The core configuration levets, andc* , are omitted.
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MO Scheme for B through N,
and Related lons

iz |n diatomic molecules of the lighter elements B,, and N,
mixing between sigma-type MOs causesdhg level to move
down and the,, level to move up in energy.

0T O2p
Ty A T[2p
O2p _—
o | ——
o T — o
O2s - - O2s

S-p mixing >

= Theo,, level rises above that af,.

iz This results in the following scheme, in which te&ative
orderingm,, < G,, OCCUTS:



MO Scheme for B through N,
and Related lons




Configurations of Second Period
Homonuclear Diatomic Molecules

Bond | D(X,) | d(X—X) | Magnetic
X, Configuration Order| kJ/mol| pm Property
Li, | (0,02 1 | 101 | 267.3| dia
Be, | (6,)%(6% »)? 0 n/a n/a n/a
B, | (0297(6% 2)(m2)° 1 291 159 para
C, | (029)%(0* 29(m,)" 2 599 | 124.3 dia
N, | (029°(6% 20 (T2)(02,)° 3 942 | 109.77 dia
O, | (6297(0* 29%(02p) () (T ) 2 494 | 120.75| para
F, | (6297(0% 29(02p) (150) (1 5)* 1 155 141 dia
NE, | (529°(6* 29(025) (150) (T 5)* (6% 2)° 0 n/a n/a n/a




MO Description of O, and Its lons
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theory cannot explain easily.

= MO model predicts the observed paramagnetism, Wik h

Formula Configuration Bond D(X,) |d(X—X) | Magnetig
Order| kJ/mol| pm | Property
0, (629 7(0% 290 2p) () (T ) 2 494 | 120.75 para
O, | (02)%(6% 20 (05) () (m*5)° | 1.5 | 395 135 para
O, | (029%(0% 29%(02p) () *(70* )" 1 126 149 dia
O," [ (02)°(0* 2 )(0,) () (m* )t | 2.5 643 111.6 para




Second Period Heteronuclear Diatomic Molecules

MO scheme for homonuclear diatomic molecules can be
adapted to describe bonding in heteronuclear diatom
molecules.

The two atoms do not contribute equally to each MO.

® More electronegative element has lower energy AOs
and makes a greater contribution to bonding MOs.

® Less electronegative atom makes a greater
contribution to antibonding MOs.

Ordering of MOs energies in heteronuclear casasfstembe
like lighter homonuclear cases: I.8,, < 6,,



Heteronuclear Diatomic Molecules
Examples

CO, CN, NO' (10 valence electrons, like,N
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