Quantum Mechanical Approaches to Molecular Bonding

- © In principle, it is possible to construct a Schrödinger equation, $\mathcal{H}\Psi = E\Psi$, to describe the electronic structure of a molecule.
- ⊗ In practice, seeking exact solutions to the Schrödinger equation for molecules is an insurmountable mathematical problem.
- Two principal approaches have been taken to construct approximate wave functions for molecules, starting with the atomic orbitals of the atoms comprising the molecules.
 - 1. Valence Bond (VB) theory developed by Linus Pauling and co-workers, essentially puts the Lewis notion of electron pairs on a quantum mechanical footing, in which each shared or lone pair of electrons about an atom occupies a localized orbital.
 - 2. Molecular orbital (MO) theory, developed by Robert S. Mulliken and co-workers, constructs new orbitals that are *delocalized* (i.e., "spread out") across the molecule.
- VB and MO theories take different mathematical approaches to constructing wave functions for the molecule, but their results are often equivalent.

Molecular Orbital Theory of Diatomic Molecules

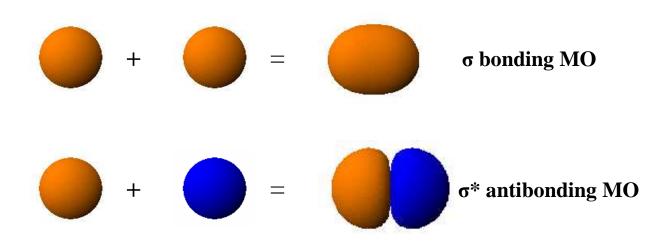
- MO theory seeks to formulate orbitals that extend over the entire molecule as linear combinations of atomic orbitals (LCAOs) on the individual atoms.
- For diatomic molecules the MOs are positive and negative combinations of the wave functions for pairs of atomic orbitals (AOs) on the two atoms, A and B:

$$\Psi^{+} = a\psi_{\rm A} + b\psi_{\rm B}$$

$$\Psi^{-} = a\psi_{\rm A} - b\psi_{\rm B} = a\psi_{\rm A} + (-b\psi_{\rm B})$$

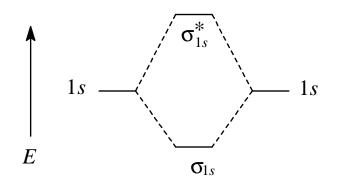
where *a* and *b* are mixing constants, which indicate the degree of overlap of the two orbitals.

MOs from 1s Orbitals Homonuclear Diatomic Molecules



- Positive combination causes a build-up of electron density between the nuclei, resulting in a sigma bonding MO (σ).
- Negative combination results in a nodal plane between the nuclei, which works against bonding, resulting in a **sigma antibonding MO** (σ^*).
- In general, number of MOs formed as LCAOs equals number of AOs used.

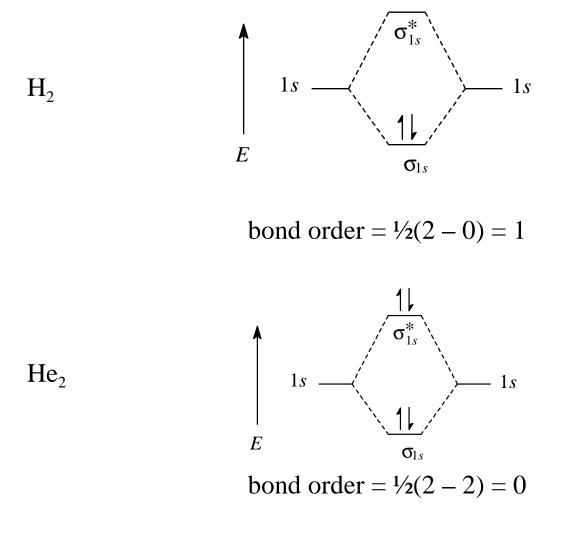
MO Energy Level Scheme First Period Homonuclear Diatomic Cases



- Scheme is filled in the usual aufbau manner, following the Pauli exclusion principle and Hund's rule of maximum multiplicity (for the ground state).
- Bond order is defined as follows:

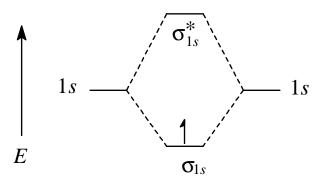
bond order = $\frac{1}{2}$ (bonding *e*'s – antibonding *e*'s)

H_2 and He_2

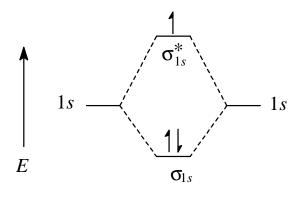


(He₂ does not exist.)

 ${\rm H_2}^{\scriptscriptstyle +} \mbox{ and } {\rm He_2}^{\scriptscriptstyle +} \mbox{ Ions }$



bond order = $\frac{1}{2}(1-0) = \frac{1}{2}$



 H_2^+

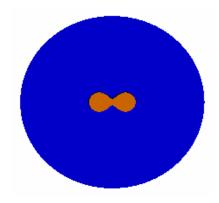
bond order = $\frac{1}{2}(2-1) = \frac{1}{2}$

MOs for Second Period Homonuclear Diatomic Molecules

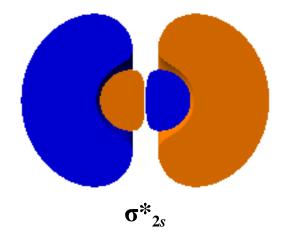
- In general, atomic orbitals that are most similar in energy interact most effectively in forming MOs.
- MOs for second period diatomic molecules are combinations of the type $2s \pm 2s$ and $2p \pm 2p$.

Sigma MOs from $2s \pm 2s$

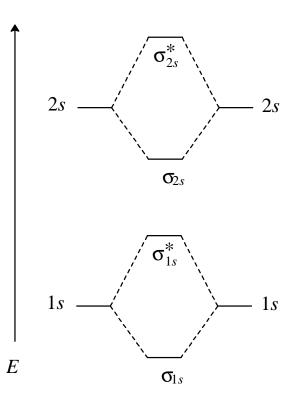
(cutaway views)



 σ_{2s}

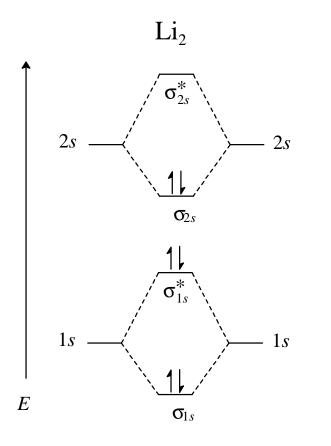


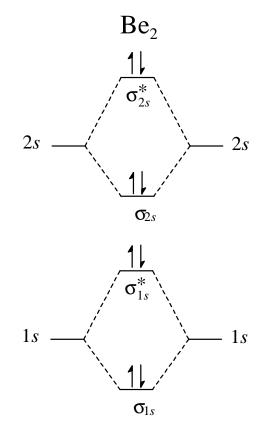
MO Energy Level Scheme Li₂, Be₂, and Related Ions



Configurations of Li₂ and Be₂

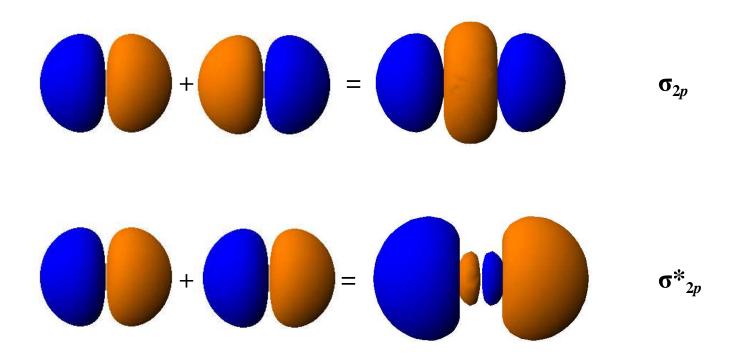
E





bond order = 1

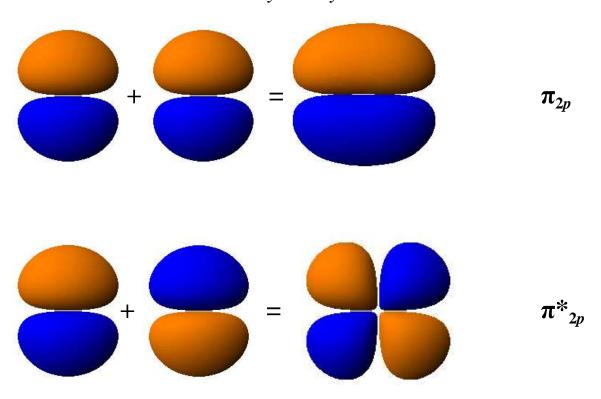
bond order = 0



- For homonuclear diatomic molecules $(D_{\infty h}) \sigma$ MOs, whether formed from *s* or *p* AOs, have Σ_{g}^{+} symmetry, and σ^{*} MOs have Σ_{u}^{+} symmetry.
- For heteronuclear diatomic molecules $(C_{\infty \nu})$ σ and σ^* MOs, whether formed from *s* or *p* AOs, have Σ^+ symmetry.

Pi MOs from $2p \pm 2p$

- Two degenerate π_{2p} bonding MOs, one from $2p_x + 2p_x$ and one from $2p_y + 2p_y$.
- Two degenerate π^*_{2p} antibonding MOs, one from $2p_x 2p_x$ and one from $2p_y 2p_y$.

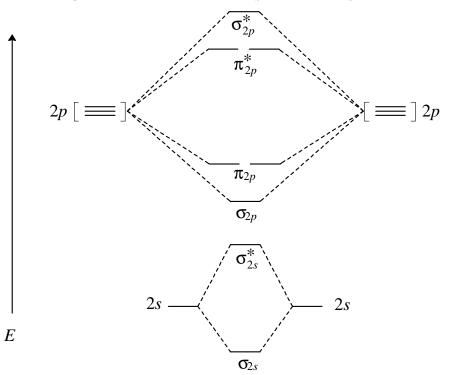


$2p_y \pm 2p_y$ Combinations

- For homonuclear diatomic molecules $(D_{\infty h}) \pi$ MOs have Π_u symmetry, and π^* have Π_g symmetry.
- For heteronuclear diatomic molecules $(C_{\infty\nu})$ π and π^* MOs have Π symmetry.

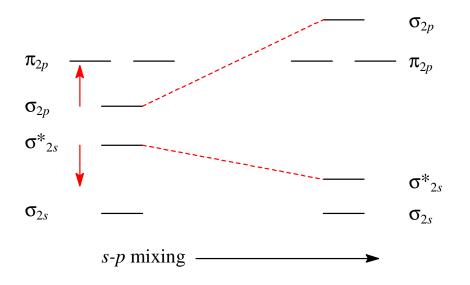
MO Scheme for O₂ through Ne₂ and Related Ions

The core configuration levels σ_{1s} and σ^*_{1s} are omitted.



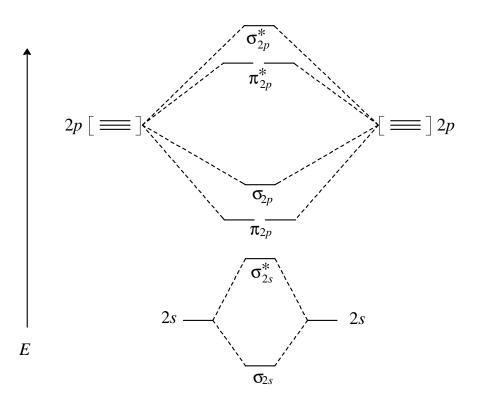
MO Scheme for B₂ through N₂ and Related Ions

In diatomic molecules of the lighter elements B_2 , C_2 , and N_2 , mixing between sigma-type MOs causes the σ^*_{2s} level to move down and the σ_{2p} level to move up in energy.



- The σ_{2p} level rises above that of π_{2p} .
- This results in the following scheme, in which the relative ordering $\pi_{2p} < \sigma_{2p}$ occurs:

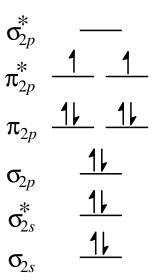
MO Scheme for B₂ through N₂ and Related Ions



X_2	Configuration	Bond Order	D(X ₂) kJ/mol	d(X–X) pm	Magnetic Property
Li ₂	$(\sigma_{2s})^2$	1	101	267.3	dia
Be ₂	$(\sigma_{2s})^2(\sigma_{2s}^*)^2$	0	n/a	n/a	n/a
B ₂	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^2$	1	291	159	para
C ₂	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4$	2	599	124.3	dia
N_2	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^4 (\sigma_{2p})^2$	3	942	109.77	dia
O ₂	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p})^2 (\pi_{2p})^4 (\pi_{2p}^*)^2$	2	494	120.75	para
F ₂	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^4$	1	155	141	dia
Ne ₂	$(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\sigma_{2p}^*)^2 (\pi_{2p}^*)^4 (\sigma_{2p}^*)^4 (\sigma_{2p}^*)^2$	0	n/a	n/a	n/a

Configurations of Second Period Homonuclear Diatomic Molecules

MO Description of O₂ and Its Ions



MO model predicts the observed paramagnetism, which VB theory cannot explain easily.

Formula	Configuration		D(X ₂) kJ/mol	d(X–X) pm	Magnetic Property
O ₂	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^2$	2	494	120.75	para
\mathbf{O}_2^-	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^3$	1.5	395	135	para
O_2^{2-}	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^4$	1	126	149	dia
O_2^{+}	$(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2p}^*)^4(\pi_{2p}^*)^1$	2.5	643	111.6	para

Second Period Heteronuclear Diatomic Molecules

- MO scheme for homonuclear diatomic molecules can be adapted to describe bonding in heteronuclear diatomic molecules.
- The two atoms do not contribute equally to each MO.
 - More electronegative element has lower energy AOs and makes a greater contribution to bonding MOs.
 - Less electronegative atom makes a greater contribution to antibonding MOs.
- Solution Ordering of MOs energies in heteronuclear cases tends to be like lighter homonuclear cases: i.e., $\pi_{2p} < \sigma_{2p}$

Heteronuclear Diatomic Molecules Examples

CO, CN⁻, NO⁺ (10 valence electrons, like N_2)

bond order = 3

NO (11-electron free radical, like O_2^+)

bond order = 2.5